Mamá, ¿cuál es el último número?

5 diciembre 2016

La pregunta del título fue el primer encuentro con el infinito, para muchos de nosotros.

En nuestras primeras experiencias nos encontramos con conjuntos finitos de cosas, nuestros juguetes, nuestros primos… o un kilo de garbanzos, que siendo muchas unidades, sigue siendo finito. Algunas cosas enormes, como nuestra ciudad, desdibujaban sus fronteras, más por inalcanzables que por necesariamente infinitas.

Pero un día, probablemente insultándonos, nos encontramos que “Tú eres tonto”-“Y, tú más” era una sucesión que no tenía por qué tener fin.

Más adelante surgen cosas como “Tú eres tonto hasta el infinito”- “Y tú hasta el infinito más uno” o bien, “Todo lo que tú digas, tú lo eres una vez más”.

La búsqueda científica, abandonada casi toda esperanza de encontrar La Verdad, se dedica a generar modelos compatibles con los hechos observados, que nos permitan entender “cómo” funcionan y de esta manera tener cierta capacidad de control sobre ellos o, al menos, de predicción.

Y esto también podemos hacerlo con el infinito.

La primera manera que se nos ocurre de saber que algo es infinito, es demostrar que no es finito. Lo hacemos por “reducción al absurdo” (de lo que ya hablamos aquí). Suponemos que es finito y llegamos a una conclusión falsa, luego la suposición debía ser incorrecta.

En nuestra infantil petición del último número, suponemos que lo hay… y en cuanto nos lo den, procederemos a sumarle una unidad para tener un número mayor. Por lo tanto… no hay un último número.

Y así, un chiquitín que no levanta un palmo del suelo acaba de demostrar la existencia del infinito.

Hace unos días Gaussianos me hizo recordar una tradicional demostración de la infinitud de los números primos. Y si os fijáis se parece mucho a lo que acabamos de hacer, remedando lo que pensabais en vuestra infancia.

Recordaréis que los números primos son aquellos que sólo se pueden dividir con resto cero entre sí mismos y el uno. Por ejemplo, 10 no es primo, porque se puede dividir de forma exacta entre dos y cinco. En cambio, 17 sí es primo.

Los números primos tienen una importancia vital en cómo codificamos nuestros mensajes secretos o privados en la actualidad, pero eso os lo cuento otro día. Hoy vamos a ver sólo que hay un porrón…

Si vamos pensando en qué números serán primos, de uno en uno… es sencillo

Sólo se consideran primos los números mayores que uno.

2

3

El cuatro, no, que es divisible por 2.

5

El seis tampoco, divisible entre 2 y 3

etc.

Para saber si un número dado es primo, voy dividiendo entre los primos anteriores

Por ejemplo, 19

19 entre dos… a 9 y sobra uno, no.

19 entre tres… a 6 y sobra uno, tampoco

19 entre cinco… a 3 y sobran cuatro, nope

Ya no hace falta seguir, cuando el resultado (3) es menor que el número por el que divides (5) puedes parar, porque sería como intentar dividirlo entre tres y eso ya lo hemos probado.

Por lo tanto el 19 es primo.

Cualquier otro número puede escribirse como el producto de números primos, por ejemplo

6 = 2·3

15 = 3·5

Los factores primos pueden aparecer varias veces

8 = 2·2·2

12= 2·2·3

Volvamos a nuestra búsqueda del infinito.

Como te digo, los números primos son infinitos… pero eso hay que demostrarlo.

Hagamos lo mismo que antes, imaginemos que el conjunto de los número primos es limitado, por ejemplo (2,3,5).

Ahora déjame que te pregunte por este número

N = (2·3·5) + 1 = 31

Dicho más sencillo, el producto de todos los primos que me has dado, más una unidad.

¿Sabes qué? ¡Es primo!

Comprobémoslo.

31 entre 2… a quince, sobra uno.

31 entre 3… a diez, también me sobra uno

31 entre 5… a seis, otra vez me sobra uno

Siempre me da como cociente el producto del resto de los primos (por los que no divido) y me sobra esa unidad que sumé. Así que he encontrado un primo más… por lo tanto, de la misma manera que antes, tu hipótesis de partida era falsa.

Lo hemos hecho con un conjunto pequeño de primos, pero puedes coger cualquier conjunto de primos, siempre que sea finito, y construir uno nuevo. Por lo tanto en este segundo encuentro con el infinito, después de tantos años, volvemos a salir victoriosos y podemos “manejarlo”, por inaprensible que parezca su concepto.

Aquí os dejo, a la orilla, os invito a que os adentréis en el infinito mar del infinito… en realidad de “los infinitos” (¡¡hay más de uno, y son infinitamente diferentes!!).

 


Del absurdo y los hombres

6 julio 2015

Este post se ha publicado previamente en Naukas

Los matemáticos tratan de demostrar sus enunciados de formas muy variadas. Una de las más divertidas y fáciles de entender es la Reducción al absurdo.

Pensamos que algo podría ser CIERTO.

Vale, pues vamos a suponer que es FALSO (metemos una semilla podrida).

Le damos unas vueltas (siguiendo escrupulosamente las leyes de la lógica y las mates)

Llegamos a algo que resulta ser mentira… por lo que nuestra suposición inicial estaba mal.

Así que, como estaba mal suponer que era falso, hemos demostrado que es cierto… ta channnn.

Por ejemplo:

Enunciado a demostrar:

Hay infinitos números primos (de esos que no se pueden dividir exactamente entre nadie más que ellos)

1. Supongamos que hay sólo unos cuantos: p1,p2,p3… pn

2. Construimos un número multiplicándolos todos y sumando 1

3. Si dividimos ese número entre cualquiera de los primos no sale entero, sobra 1.

Un ejemplo sencillo.

– Si el conjunto de primos totales fuera 1,2,3,5

– Construimos 1·2·3·5 +1 = 31

– Dividimos por 2, nos sale 15 (el producto de los otros) y sobra 1.

– Dividimos por 5, nos sale 6 y nos sobra 1. No hay manera.

4. Por lo tanto, si el número que hemos construido no puede ser dividido exactamente por ningún otro primo, resulta que él mismo es un número primo… así que tenemos un número primo más para ese conjunto que pensamos que era limitado. En nuestro miniejemplo hemos descubierto el 31 que, efectivamente, es primo también.

5. Por lo tanto la asunción de que el conjunto de números primos era finito es falsa, así que es infinito. Hecho.

Y ahora a por los hombres… (y las mujeres, sí, y las mujeres…)

La esencia del asunto es: Si elaborando frases con corrección dices idioteces es porque estás asumiendo algún principio que es falso.

Has metido una semilla podrida y da malos frutos.

¿Recuerdas esas situaciones en las que no hay manera de generar una explicación razonable porque no aparecen más que paradojas y sinsentidos?

Pues no le des más vueltas, estás terminando una demostración por reducción al absurdo. Alguno/s de los supuestos que manejas son erróneos.

Por ejemplo:

La gente se comporta racionalmente y por eso hacen X (para casi todo X)

La gente no actúa porque no tiene información y por eso cuando son informados… siguen sin actuar

Tú mismo dices que tal actividad o persona son tu prioridad y no le dedicas casi nada de tu tiempo libre o energías

De hecho, si te atreves, te proponemos el duro juego de confrontar lo que dices de las cosas, lo que piensas de ti mismo con lo que haces… pero siéntate antes.

Quizá la solución sea LEER la vida, ESCUCHARLA, no imponerla nuestros preconceptos y prejuicios y después tratar de que case todo… porque no lo hará. O al menos, etiqueta tus prejuicios como revisables… por si las moscas.

Esto intentamos hacer en ciencia, LEER, MEDIR lo que la realidad dice e interpretarlo después, no antes. Además nuestras “verdades” son provisionales… para cuando aparezca algo que no cuadre.


A %d blogueros les gusta esto: